Showing posts with label LHC. Show all posts
Showing posts with label LHC. Show all posts

Thursday, February 04, 2010

Higgs boson as an unparticle

The unparticle concept was proposed by Harward professor Howard Gorgi before few years. AWT introduces unparticles by concept of fractally nested density fluctuations inside of dense gas. For example clouds are scale invariant unparticle stuff, similar to Perlin noise. Recently D. Stancato & J. Terning have proposed unparticle character of Higgs bosone. Prof. Hawking reckons, that a number of "partner" particles will emerge, instead, thus making prof. Higgs upset by his stance.

This is not so difficult to understand, because from common perspective the unparticle hypothesis would effectively mean, no distinct Higgs particle signal will be ever found, until we achieve collider jets, composed of unique particles to demonstrate it - because Higgs field interaction would have a character of kink widespread over ultraviolet part of mass-energy spectrum. Could prof. Higgs deserve Nobel price, if it turns out Higgs boson is just some Unhiggs?

In more illustrative way, Unhiggs field is analogous to coat of virtual quarks, in which all elementary particles are surrounded at small distances. This coat glues particles together at smallest distances. Such unstable particles can still be observed by their collective effects, for example by jet suppression during particle collisions. Just because it's difficult to call them particles they're called an unparticles. It's responsible for so called Yukawa coupling, responsible for pairing and gluing of nucleons and quarks inside of atom nuclei, for formation of top-quark pairs, glueballs, pentaquark and another artifacts, which were observed recently at Tevatron.

From Standard model follows, the product of Higgs boson Yukawa coupling to the left- and right-handed top quarks have nearly the same rest mass (173.1±1.3 GeV/c2) like those predicted for Higgs boson (178.0 ± 4.3 GeV/c2). It means, Higgs boson was observed already at Tevatron as a product of top-quark coupling and identified by dilepton channel of top-quark decay.


In AWT such field exists at all scales and it manifests by Casimir force mediated by virtual photons at micrometer scale, or dark matter at megaparsec scale, for example.  It means, Higgs field has a scale invariant character of fuzzy unparticles, which are changing their size accordingly to carrier particles. The combination of trivial and topological band insulators within topological insulators and superconductors is bringing anyons and plektons - unparticles that behave neither according to purely Bose nor Fermi statistics.

The title of recent NewScientist article "In SUSY we trust: What the LHC is really looking for" illustrates clearly, physicists are aware of the conceptual problems of Higgs field concept. The article should be interpreted like: "Uhm, well, ... we really don't believe, Higgs boson will be ever found at LHC - so we should concentrate to supersymmetry, for not being blamed completely before publicity". The question is, whether physicists could admit openly before publicity, LHC is useless with respect to search of Higgs boson even by their own theories, if they wasted so much money in it.

This is a demo, how seemingly spontaneous scientific PR is basically working. Dual situation appeared recently in media, when scientists started to speculate, (primordial) gravitational waves cannot be found at all due the "quantum-spread", which renders detectors of gravitational waves useless. With respect to AdS/CFT duality the success or problems with particle search at Planck scale will be replicated/mirrored at cosmological scales (WIMPs detection) and vice-versa.

The similar U-turn we could expect later regarding estimations of LHC collider safety. The most problematic part of Unhiggs detection at LHC is the strangelet controversy: in contact with terresterial matter it could enable avalanche chain formation of clusters of particles, analogous to stable microscopic black holes predicted by Randall-Sundrum model. Recently A. Choptuik demonstrated, when extra-dimensions are involved, black hole could be formed with compare to existing CERN safety analysis, considering Hawking radiation as the only mechanism of black hole evaporation (1, 2, 3). In addittion, CERN considers, black hole could interact with its neighborhood via gravitational interaction only, thus purportedly neglecting their electromagnetic interaction, which is 10e+41 x stronger.

"Does that mean the LHC will make black holes? Not necessarily", Choptuik says. "The Planck energy is a quintillion times higher than the LHC's maximum. So the only way the LHC might make black holes is if, instead of being three dimensional, space actually has more dimensions that are curled into little loops too small to be detected except in a high-energy particle collision. Predicted by certain theories, those extra dimensions might effectively lower the Planck energy by a huge factor."

Well, if some extra-dimensions could wipe-out one quintillion factor (?!?) of LHC safety expected, can scientists admit, they're openly planning to verify theory, which predicts formation of stable black holes just by formation of black holes at LHC? Could CERN physicists ever admit, it could be qualified as an criminal act by the rest of society?

We should realize, CERN physicists just want to build and operate LHC collider despite of any risk, because it provides them safe and stable jobs and environment for scientific carrier. They're supported in their activities by lobby of private companies involved in technical support of LHC. We could say, high concentration of money in civilization leads to spontaneous formation of dense states of matter in simmilar way, like dense concentration of energy in universe. The desinformed rest of society underestimated these emergent relationships, which resulted into establishing of large groups of people, who are openly ignorant - if not even hostile - to further destiny of civilization.

Thursday, January 29, 2009

AWT and LHC safety risk

The LHC "black hole" issue disputed (1, 2, 3) and recently reopened (1, 2, 3) is manifestation of previously disputed fact, every close community becomes sectarian undeniably and separated from needs of rest of society like singularity by total reflection mechanism. Ignorance of fundamental ideas (Heim theory) or discoveries (cold fusion, surface superconductivity, "antigravity") on behalf of risky and expensive LHC experiments illustrates increasing gap between priorities of physical community and interests of the rest of society.

The power of human inquisitiveness is the problem here: as we know from history, scientists as a whole never care about morality, just about technical difficulties. If they can do something, then they will do it - less or more lately, undeniably. No matter whether it's nuclear weapon, genetically engineered virus and/or collider. Which makes trouble at the moment, the results of such experiments can threaten the whole civilization. We should know about this danger of human nature and we should be prepared to suffer consequences. Max Tegmark’s “quantum suicide” experiment doesn't say, how large portion of the original system can survive its experiment.

So, what's the problem with LHC experiments planned? Up to this day, no relevant analysis, evaluating all possible risks and their error bars is publicly available. Existing safety analysis and reports (1, 2) are very rough and superficial, as they doesn't consider important risk factors and scenarios, like formation of charged black holes or surface tension phenomena of dense particle clusters. There's an obstinate tendency to start LHC experiments without such analysis and to demonstrate first successful results even without thorough testing phase. Because the load of accelerator was increased over 80% of nominal capacity during first days impatiently, the substantial portion of cooling system crashed due the massive spill (100 tons) of expensive helium and monitoring systems of whole LHC are in extensive upgrade and replacement to avoid avalanche propagation of the same problem over whole accelerator tube in future.

Up to these days, publicity has no relevant and transparent data about probability of supercritical black hole formation during expected period of LHC lifetime and about main factors, which can increase total risk above acceptable level, in particular the risk associated to:

  1. Extreme asymmetry of head-to-head collisions, during which a zero momentum/speed black holes can be formed, so they would have a lot of time to interact with Earth with compare to natural protons from cosmic rays. The collision geometry is has no counterpart in nature, as it's a product of long-term human evolution, not natural processes.

  2. Avalanche-like character of multi-particle collisions. When some piece of matter appears in accelerator line, then whole content of LHC will feed it by new matter incoming from both directions by nearly luminal speed, i.e. in much faster way with compare to collisions of natural cosmic rays appearing in stratosphere

  3. Proximity of dense environment. With compare to stratospheric collisions of gamma rays, the metastable products of LHC collisions can be trapped by gravitational field of Earth and to interact with it in long term fashion. Some models are considering, the black hole can move in Earth core for years without notion, thus changing the Earth into time-bomb for further generations.

  4. Formation of charged and magnetic black hole. As we know from theory, real black holes should always exhibit nonzero charge and magnetic field as the result of their fast surface rotation. While force constant of electromagnetic force is about 10^39 times stronger then those of gravitational interaction (and the force constant of nuclear force is even much higher), the omitting of such possibility from security analysis is just a illustration of deep incompetence of high energy physics and it looks rather like intention, than just omission. It's not so surprising, as every introduction of such risk into safety analysis would lead into increasing of LHC risk estimations in many orders of magnitude, making them unfeasible in the eyes of society.

  5. Formation of dense clusters of quite common neutral particles, which are stable well outside from LHC energy range (presumably the neutrons). This risk is especially relevant for ALICE experiment, consisting of head-to-head collisions of heavy atom nuclei, during which the large number of free neutrons can be released in the form of so called neutron fluid. The signs of tetra-neutron existence supports this hypothesis apparently. The neutron fluid would stabilize neutrons against decay due its strong surface tension by analogous way, like the neutrons inside neutron stars. The risk of neutron fluid formation is connected to possible tendency to expel protons from atom nuclei in contact with neutron fluid, thus changing them into droplets of another neutron fluid by avalanche like mechanism, which was proposed for strangelet risk of LHC originally.

  6. Surface tension effects of large dense particle clusters, like the various gluonium and quarkonium states which CAN stabilize even unstable forms of mater, like neutral mesons and other hadrons up to levels, they can interact with ordinary matter by mechanism above described under formation of another dense particle clusters, so called strangelets (sort of tiny quark stars, originally proposed by Ed Witten). The evidence of these states was confirmed recently for tetra- and pentaquark exotic states. By AWT the surface tension phenomena are related to dark matter and supersymmetry effects observed unexpectedly in Fermilab (formation of di muon states well outside of collider pipe), as we can explain later. If this connection will be confirmed, we aren't expected to worry about strangelet formation anymore - simply because we observed it already!

With compare to black hole formation, the risks of strangelet and neutron fluid aren't connected to collapse of Earth into gravitational singularity, but to release of wast amount of energy (comparable to those of thermonuclear fusion), during which of most of matter would be vaporized and expelled into cosmic space by pressure of giant flash of accretion radiation.

As I explained already, cosmic ray arguments aren’t wery relevant to highly asymmetric LHC collisions geometry, so it has no meaning to repeat them again and again. This geometry - not the energy scale - is what makes the LHC collisions so unique and orthogonal to extrapolations based on highly symmetrical thermodynamics. It’s product of very rare human evolution. Whole AWT is just about probability of various symmetries.

So we are required to reconsider LHC experiments in much deeper, publicly available and peer reviewed security analysis. We should simply apply scientific method even to security analysis of scientific experiments - no less, no more. By my opinion, these objections are trivial and mostly evident - but no safety analysis has considered them so far from apparent reason: not to threat the launch of LHC. So now we can just ask, who is responsible for this situation and for lack of persons responsible for relevant safety analysis of LHC project of 7 billions € in total cost?

Safety is the main concern of LHC experiments. You can be perfectly sure, LHC experiments are safe because of many theories. After all, the main purpose of these experiments is to verify these theories.

Isn't the only purpose of LHC to verify it's own safety at the very end? Is it really enough for everybody?